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The general low-energy theory of electrons interacting via repulsive short-range interactions on graphene’s
honeycomb lattice at half-filling is presented. The exact symmetry of the Lagrangian with local quartic terms
for the Dirac four-component field dictated by the lattice is identified as D2�Uc�1�� time reversal, where D2

is the dihedral group, and Uc�1� is a subgroup of the SUc�2� “chiral” group of the noninteracting Lagrangian
that represents translations in Dirac language. The Lagrangian describing spinless particles respecting this
symmetry is parametrized by six independent coupling constants. We show how first imposing the rotational,
then Lorentz, and finally chiral symmetry to the quartic terms—in conjunction with the Fierz
transformations—eventually reduces the set of couplings to just two, in the “maximally symmetric” local
interacting theory. We identify the two critical points in such a Lorentz and chirally symmetric theory as
describing metal-insulator transitions into the states with either time reversal or chiral symmetry being broken.
The latter is proposed to govern the continuous transition in both the Thirring and Nambu-Jona-Lasinio models
in 2+1 dimensions and with a single Dirac field. In the site-localized “atomic” limit of the interacting Hamil-
tonian, under the assumption of emergent Lorentz invariance, the low-energy theory describes the continuous
transitions into the insulator with either a finite Haldane’s �circulating currents� or Semenoff’s �staggered
density� masses, both in the universality class of the Gross-Neveu model. The simple picture of the metal-
insulator transition on a honeycomb lattice emerges at which the residue of the quasiparticle pole at the
metallic and the mass gap in the insulating phase both vanish continuously as the critical point is approached.
In contrast to these two critical quantities, we argue that the Fermi velocity is noncritical as a consequence of
the dynamical exponent being fixed to unity by the emergent Lorentz invariance near criticality. Possible
effects of the long-range Coulomb interaction and the critical behavior of the specific heat and conductivity are
discussed.
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I. INTRODUCTION

Two-dimensional honeycomb lattice of carbon atoms may
be viewed as the mother of all other forms of carbon. Its
crucial electronic property, which arises as a consequence of
the absence of the inversion symmetry around the lattice site,
is that the usual Fermi surface is reduced to just two points.
The electronic dispersion may be linearized around these two
points, after which it becomes isotropic and dependent on the
single dimensionful parameter Fermi velocity vF�c /300.
The pseudorelativistic nature of the electronic motion in
graphene has since its synthesis placed this material at the
center stage of condensed-matter physics. Many qualitatively
novel phenomena that take or may take place in such a sys-
tem of “Dirac” electrons are actively discussed in the rapidly
growing literature on the subject.1

In this paper we discuss the low-energy theory and the
metal-insulator quantum phase transitions of the interacting
Dirac electrons on the honeycomb lattice, building upon and
expanding significantly the earlier work by one of us.2 In the
first approximation, all weak interactions of Dirac electrons
in graphene may be neglected at half-filling, when the Fermi
surface consists of the Dirac points. This is because short-
range interactions are represented by local terms which are
quartic in the electron fields, which makes them irrelevant
near the noninteracting fixed point by power counting. The
same conclusion turns out to apply to the long-range tail of
the Coulomb interaction, which remains unscreened in
graphene, although only marginally so.2–4 Nevertheless, if

strong enough, the same interactions would turn graphene
into a gapped Mott insulator. As an example, at a strong
on-site repulsion the system is likely to be the usual Néel
antiferromagnet.2,5 It is not a priori clear on which side of
this metal-insulator transition graphene should be. With the
standard estimate for the nearest-neighbor hopping in
graphene of t=2.5 eV and the Hubbard interaction of U
�7–12 eV, it seems that the system is below yet not too far
from the critical point estimated to be at U / t�4–5.2,6–8 If
sufficiently weak, the electron-electron interactions only pro-
vide corrections to scaling of various quantities, which ulti-
mately vanish at low temperatures or frequencies. At—what
is probably a more realistic—an intermediate strength, the
flow of interactions and the concomitant low-energy behav-
ior may be influenced by the existence of metal-insulator
critical points. It is possible that some of the consequences of
such interaction-dominated physics have already been ob-
served in the quantization of the Hall conductance at filling
factors zero and one.9–14 As we argued elsewhere, the
anomalously large value of the minimal conductivity in
graphene15 may be yet another consequence of the Coulomb
repulsion between electrons.16,17

The above discussion raises some basic questions. What is
the minimal description of interacting electrons in graphene
at “low” energies? What is the symmetry of the continuum
interacting theory and how does it constrain the number of
coupling constants? What kinds of order may be expected at
strong coupling and what is the nature of the metal-insulator
quantum phase transition? In this paper, we address these
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and related issues. In the rest of this section we give a pre-
view of our main results.

The simplest prototypical system that exhibits the physics
of interacting Dirac fermions which we seek to understand is
the collection of spinless electrons interacting via short-range
interactions at half-filling. For present purposes, an interac-
tion may be considered as “short ranged” if its Fourier trans-
form at the vanishing wave vector is finite.18 The least irrel-
evant quartic terms one can add to the noninteracting Dirac
Lagrangian will then be local in space and time and, of
course, quartic in terms of the four-component Dirac fields
that describe the electronic modes near the two inequivalent

Dirac points at wave vectors �K� at the edges of the Brillouin
zone. The most general local quartic term in the Lagrangian
would be of the form

Lint = ��†�x�,��M1��x�,�����†�x�,��M2��x�,��� , �1�

where M1 and M2 are four-dimensional Hermitian matrices.
The symmetry alone, however, immediately drastically re-
duces the number of independent couplings from the appar-
ent 136 to just 15. Although the point group of the honey-
comb lattice is C6v, the exact spatial discrete symmetry of
the Lagrangian is only the dihedral group D2 or the vier-
ergruppe, which consists of the reflections through the two
coordinate axis shown in Fig. 1, and the inversion through
the origin. Such a small symmetry results from the very
choice of two inequivalent Dirac points out of six corners of
the Brillouin zone, which reduces the symmetry to the
simple exchange of the two sublattices �reflection around A
axis�, the exchange of Dirac points �reflection around B
axis�, and their product �the inversion through the origin�.
D2, the time reversal, and the translational invariance are
shown to leave 15 possible different local quartic terms in
the Lagrangian.

Fortunately, not all of these still numerous quartic terms
are independent and there are linear constraints between
them implied by the algebraic Fierz identities.19 The Fierz
transformations are rewritings of a given quartic term in
terms of others, and we provide the general formalism for
determining the number and the type of independent quartic
couplings of a given symmetry. For the case at hand, we find
that spinless electrons interacting with short-range interac-
tions on honeycomb lattice are in fact described by only six

independent local quartic terms. The inclusion of electron
spin would double this number to 12.

The linearized noninteracting Lagrangian for Dirac elec-
trons,

L0 = �̄�x�,��������x�,�� �2�

as well known, exhibits the Lorentz and the global SUc�2�
�“chiral”� symmetry. The latter generated by ��3 ,�5 ,�35�,
with �35=−i�3�5, is nothing but the “rotation” of the “pseu-
dospin” or “valley,” corresponding to two inequivalent Dirac
points.20 A general quartic term allowed by the lattice sym-
metry, on the other hand, has a much smaller symmetry, as
already mentioned. Nevertheless, we will argue that near the
metal-insulator quantum critical points, all or nearly all of
the larger symmetry possessed by the noninteracting part of
the Lagrangian gets restored. This conclusion is supported by
the—admittedly uncontrolled—but nevertheless quite infor-
mative one-loop calculation. First, we find three distinct
critical points in the theory, all of which have not only the
rotational but the full Lorentz-symmetric form. This imme-
diately implies that the dynamical critical exponent is always
z=1. This is quite remarkable in light of the fact that the
microscopic theory is not even rotationally invariant and that
the critical points in question are purely short ranged.21 The
fact that z=1 has important implications for several key
physical observables near the critical point, as we discuss
shortly. Furthermore, we find that two out of three critical
points in the theory exhibit a full chiral symmetry as well.
We identify the three fixed points in the theory as corre-
sponding to three possible order parameters or “masses” that
develop in the insulating phase at strong coupling.

�1� ��̄�35�	, which preserves chiral, but breaks time-
reversal symmetry. Microscopically, this order parameter
may be understood as a specific pattern of circulating cur-
rents, as discussed in the past.22

�2� ��̄�	, which preserves the time-reversal symmetry
and the single chiral generator �35, which will be shown to
correspond to translational invariance. This order parameter
describes a finite staggered density, i.e., the difference be-
tween the average densities on the two sublattices of the
honeycomb lattice.23

�3� ��̄��3 cos �+�5 sin ���	, which preserves the time
reversal but breaks translational invariance ��35�. This order
parameter can be understood as the specific “Kekule” modu-
lation of the nearest-neighbor hopping integrals.24

In one-loop calculation all three critical points have the
same correlation length exponent �=1, which we believe is
an artifact of the quadratic approximation. The result that the
dynamical critical exponent z=1 is, on the other hand, pos-
sibly exact. If we denote the relevant interaction parameter
with V, the Fermi velocity near the transition scales as

vF 
 �Vc − V���z−1�, �3�

so the above value of z would simply imply that it stays
regular at the transition. This appears to be in agreement with
the picture of the transition as the opening of the relativistic
“mass” in the spectrum. The mass gap in the insulating phase
scales as usual25 as

B

A

FIG. 1. Two axis of symmetry of the low-energy theory of
graphene, in real space. The Dirac points in this coordinate frame

are at �K� = �1,0��4	 /3a�, i.e., along the A axis.
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m 
 �V − Vc�z�. �4�

The transition on the metallic side is manifested as vanishing
of the residue of the quasiparticle pole26

Z 
 �Vc − V��
�, �5�

where we assumed z=1. �A more general power law is dis-
cussed in the text.� At one loop the fermion anomalous di-
mension 
� vanishes; but in general it is a positive, small,
and critical-point-dependent number. The overall picture of
the metal-insulator transition that emerges is presented in
Fig. 2.

For graphene’s pz orbitals well localized on carbon sites, a
further significant simplification takes place. All the terms
without the equal number of creation and annihilation opera-
tors for each of the two sublattices must vanish. Assuming
again the emergent Lorentz symmetry at low energies, this
allows one to finally write the simplest internally consistent
interacting theory as

L = L0 + gD2��̄�35��2 + gC1��̄��2. �6�

This Lagrangian provides the minimal low-energy descrip-
tion of interacting spinless electrons on honeycomb lattice. It
has two critical points, corresponding to transitions into in-
sulators 1 and 2 in the above; both corresponding to the
Gross-Neveu criticality in 2+1 dimensions. We discuss the
internal consistency and the sufficiency of this Lagrangian
and some of the peculiarities of the ensuing phase diagram.

The rest of the paper is organized as follows. We discuss
the point symmetry, translational symmetry, and the time-
reversal symmetry of the interacting Lagrangian as dictated
by the microscopic Hamiltonian for the system in Secs.
II A–II D. In Sec. III it is shown how further enlargements of
the symmetry would reduce the number of coupling con-
stants. We present the notion of “maximally symmetric”
theory, which shares the full Lorentz and chiral symmetry
with the quadratic term in the Lagrangian. The general for-
malism of Fierz transformations is developed and applied to
the cases of interest in Sec. IV. The change in the coupling
constants with the ultraviolet cutoff in the theory is studied in

Sec. V. The atomic limit of the general interacting theory is
described in Sec. VI and the critical exponents are discussed
in Sec. VII. In Sec. VIII we discuss the scaling of the elec-
tron propagator and the power laws for various quantities of
interest. The discussion of the long-range Coulomb interac-
tion and the critical behavior of the specific heat and the
optical conductivity are given in Sec. IX and the summary is
given in Sec. X. Finally, in Appendixes A–C we present
some of the requisite technical details: the Fierz transforma-
tion, the spectral form of the asymmetric matrix needed in
Sec. IV, and an alternative implementation of the renormal-
ization group �RG� in the presence of linear constraints.

II. SYMMETRIES AND SHORT-RANGE
INTERACTIONS

A. Hamiltonian and the Lagrangian

As the simplest microscopic model that contains the rel-
evant physics, we may consider the tight-binding Hamil-
tonian on the graphene’s honeycomb lattice defined as

H0 = t̃�
A� ,i

u†�A� �v�A� + bi
�� + H.c., �7�

where u and v are the electron annihilation operators at two

triangular sublattices of the honeycomb lattice. Here, A� de-
notes sites of the sublattice generated by linear combinations

of basis vectors a1
�= ��3,−1�a, a2

�= �0,1�a; whereas B� =A�

+b� are the sites on the second sublattice, with b� being b1
�

= �1 /�3,1�a /2, b2
�= �1 /�3,−1�a /2, or b3

�= �−1 /�3,0�a, and
a is the lattice spacing.

Within the framework of the tight-binding model, the en-

ergy spectrum is doubly degenerate E�k��= � t̃�iexp�k� ·bi
��

and becomes linear and isotropic in the vicinity of six
Dirac points at the edge of the Brillouin zone; among

which only two, hereafter chosen to be at �K� with K�

= �1,1 /�3��2	 /a�3�, are inequivalent. Retaining only the
Fourier components in the vicinity of these two inequivalent
points, the quantum-mechanical action corresponding to H0
at low energies can be written in the form S=�0

1/Td�dx�L0,
with the free Lagrangian density L0 defined as in Eq. �2�,
with � as the imaginary time and T is the temperature. Ma-
trices �� satisfy the Clifford algebra ��� ,���=2���, � ,�

=0,1 ,2, and �̄=�†�0. The summation over repeated space-
time indices is assumed hereafter. The fermionic field
��x� ,�� is defined as

�†�x�,�� = T�
�n

� dq�

�2	a�2ei�n�+iq� ·x��u†�K� + q� ,�n�,v†�K�

+ q� ,�n�,u†�− K� + q� ,�n�,v†�− K� + q� ,�n�� . �8�

Here, the reference frame is conveniently rotated so that qx

=q� ·K� /K, qy = �K� �q���K� /K2, �n= �2n+1�	T are the fermi-
onic Matsubara frequencies, 
1 /a is a high-energy cutoff,
and we set �=kB=vF=1, where vF= t̃a�3 /2 is the Fermi ve-
locity. Choosing

Z

m

v
F

VVc

FIG. 2. The behavior of the Fermi velocity �vF�, strength of the
quasiparticle pole �Z�, and the gap �m� near the metal-insulator
transition.
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�0 = ��z 0

0 �z
� ,

implies

�1 = ��y 0

0 − �y
�, �2 = ��x 0

0 �x
� . �9�

The two remaining anticommuting matrices may then be
taken as

�3 = � 0 �y

�y 0
�, �5 = � 0 − i�y

i�y 0
� . �10�

This defines the “graphene representation” of � matrices.2 ��
are the standard Pauli matrices.

Considering a more general model with further hoppings
or weak anisotropies27 can be seen not to destroy the Dirac
points but only to shift them in energy. As this can always be
compensated by a shift of the chemical potential, the La-
grangian �2� provides the low-energy description of the gen-
eral free electronic Hamiltonian on a honeycomb lattice, with
the chemical potential tuned to the Dirac point.

Note that the free Lagrangian besides the Lorentz symme-
try also possesses another chiral, pseudospin, or “valley”
global SUc�2� symmetry generated by ��3 ,�5 ,�35�. Both the
Lorentz and the chiral symmetries of the free Lagrangian are
emerging only at low energies, however, and the term qua-
dratic in derivatives in L0, for example, would spoil it. As
will be shown shortly, both symmetries are also violated by
the leading irrelevant quartic couplings introduced by the
interactions.

Let us now consider the electron-electron interactions.
The Hamiltonian of a general four-fermion interaction has
the form

Hint = �
�,�,�,�

���V��	r�
†r�

†r�r�, �11�

where r=u and v are fermionic annihilation operators, and
the matrix element corresponding to the interaction potential
V�r�� is given by

���V��	 =� dx�dy���
��x����

��y��V�x� − y�����x�����y�� .

�12�

Here we can take ���x�� to be a localized pz orbital on the site
�, so that it belongs to either one of the two sublattices of the
honeycomb lattice. In general, there is no restriction on the
overlap of the wave functions and all the matrix elements
���V��	 are in principle finite. Their relative sizes, how-
ever, may be rather different and we discuss important sim-
plifications that follow in the limit of well-localized orbitals
in Sec. VI. In the following we will consider general “short-
ranged” interactions, which are defined by the interaction
V�x�� with a regular Fourier component V�k� =0�. Without a
loss in generality, one may then take the interacting Lagrang-
ian for spinless fermions corresponding to Hint as in Eq. �1�
where M1 and M2 are some constant 4�4 Hermitian matri-
ces. The interacting Lagrangian contains therefore at most

16+ �16�15 /2�=136 independent real coupling constants.
However, the number of couplings in Lint is severely reduced
by the lattice symmetries, as we discuss next.

B. Reflection symmetries

Two obvious discreet symmetries of the honeycomb lat-
tice that have not been broken by our choice of the Dirac
points are the reflection symmetries through the lines A and
B in Fig. 1. Let us consider the former symmetry first. It
exchanges the two sublattices but not the two Dirac points.
The low-energy Lagrangian thus has to be invariant under
the exchange of the spinor components belonging to different
sublattices u�k��↔v�k��. Consequently, the symmetry operator
acting on the four-component Dirac spinor defined in Eq. �8�
has the form

S = I � �x = �2. �13�

Since under this reflection qx→qx and qy→−qy, L0 is evi-
dently invariant under S. The invariance of Lint under this
reflection symmetry requires both matrices M1 and M2 to
either commute or anticommute with the operator S,

�S,M1� = �S,M2� = 0, �14�

or

�S,M1� = �S,M2� = 0. �15�

Similarly, the reflection symmetry through the line B ex-
changes the two Dirac points while not exchanging the sub-
lattice labels. It corresponds therefore to

T = i�1�5 = �0 I2

I2 0
� . �16�

Recalling that under this transformation qx→−qx and qy
→qy, it is evident that the free Lagrangian in graphene rep-
resentation is indeed invariant under T as well. Demanding
the interacting Lagrangian Lint to be invariant under the ac-
tion of the operator T on the Dirac spinor implies that both
matrices M1 and M2 either commute or anticommute with T
as well. In other words, both matrices M1 and M2 have to be
either even or odd with respect to T,

�T,M1� = �T,M2� = 0, �17�

or

�T,M1� = �T,M2� = 0. �18�

Together with the combination of the two reflections S and T
and the identity operation, the two symmetry operations form
the dihedral group �or Klein’s vierergrouppe, in older litera-
ture� D2: D2= �1,S ,T ,ST�=Z2�Z2, the symmetry group of a
rectangle. Note that the transformation ST is just the space
inversion and that the rotation by 	 /2 does not belong to D2.

One may now classify all the four-dimensional matrices
into four categories, according to their transformation under
the two reflection symmetries S and T, respectively: even-
even A��I ,�2 , i�0�3 , i�1�5�, even-odd B��i�0�1 ,�35,
i�0�5 , i�1�3�, odd-even C���0 , i�0�2 ,�3 , i�2�3�, and odd-
odd D���1 , i�1�2 ,�5 , i�2�5�. The interacting Lagrangian
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symmetric under the D2 is thus restricted to be of the follow-
ing form:

Lint = aij��†Ai����†Aj�� + bij��†Bi����†Bj��

+ cij��†Ci����†Cj�� + dij��†Di����†Dj�� ,

�19�

where oij, o=a, b, c, d, and i, and j=1, . . . ,4 are real and
symmetric. The maximal number of independent real param-
eters specifying the allowed couplings is thus already re-
duced to 40, since each oij has ten independent components.

C. Translational invariance

The generator �35=�z � I2 of the chiral symmetry plays a
special role. It is in fact the generator of translations. To see

this, recall that under a translation by R� the electron fields
transform as

r�k�,�� → eik�·R�r�k�,�� �20�

where r=u and v. The Dirac field under the same transfor-
mation thus changes as

��q� ,�� → ei�K� ·R� ��35eiq� ·R���q� ,�� , �21�

or, in real space,

��x�,�� → ei�K� ·R� ��35��x� + R� ,�� . �22�

Translational invariance requires therefore that Lint is a scalar
under the transformations generated by �35, which we will
denote as Uc�1�. It is easy to see that this is precisely the
same as demanding the conservation of momentum in the
interaction terms. The reader is also invited to convince her-
self that the terms with the higher-order derivatives in L0
would also be invariant under the Uc�1�.

First, we observe that there are eight linearly independent
bilinears that are scalars under the Uc�1�,

XFi = �†Fi� , �23�

where F=A, B, C, and D, and i=1 and 2. The remaining
eight bilinears can be grouped into four vectors under the
same Uc�1�,

�� = ��†A3�,�†B3�� , �24�

�� = ��†B4�,�†A4�� , �25�

�� = ��†C3�,�†D3�� , �26�

�� = ��†C4�,�†D4�� . �27�

The invariance under Uc�1� implies therefore that the in-
teracting Lagrangian has the following form:

Lint = �
Fi

gFiXFi
2 + �

F

gFXF1XF2 + g���� � �� + g���� · ��

+ �
�=�,�,�,�

g��� · �� . �28�

The number of possible independent couplings is down to
18.

D. Time reversal

The set of the allowed couplings is further reduced by the
time-reversal symmetry. The microscopic interacting Hamil-
tonian �11� is invariant under the time reversal, and therefore
the corresponding low-energy Lagrangian has to possess the
same invariance. The time-reversal symmetry requires that
ItHIt

−1=H, where It is the antiunitary operator representing
the time-reversal symmetry, and thus has the form It=UK,
with U representing the unitary part of It and K is the com-
plex conjugation. To find the form of It, let us consider first
the massive Dirac Hamiltonian

H = i�0�ipi + m1�0, �29�

with the mass m1 describing the imbalance in the chemical
potential on the two sublattices.23 Recalling that momentum
changes sign under the time reversal, ItpiIt

−1=−pi, in the
graphene representation the invariance of the above Hamil-
tonian under the same transformation implies

�U,i�0�1� = �U,i�0�2� = �U,�0� = 0, �30�

and hence U= iei��1�cos ��3+sin ��5�. Within the simplest
framework of the tight-binding model with uniform hopping,
the time-reversal operator is not uniquely determined. We
thus consider a generalized tight-binding model with aniso-
tropic hopping defined as

Haniso = − �
r��A

�
i=1

3

�t̃ + �t̃r�,i�ur�
†vr�+bi

� + H.c., �31�

where

�t̃r�,i =
1

3
��r��eiK� ·bi

�
eiG� ·r� + c.c. �32�

represents a nonuniform hopping, and G� =2K� .24 On a lattice,
this particular set of hoppings generates the so-called Kekule
texture. Near the two Dirac points, the Hamiltonian Haniso
reads as

Haniso = i�0�ipi + m2i�0�5 + m3i�0�3, �33�

where m2=Im���r��� and m3=Re���r���. The two masses m2
and m3 therefore provide the low-energy representation of a
completely real microscopic Hamiltonian, so that we postu-
late that Haniso is also time-reversal symmetric. In graphene
representation, this requires the unitary part of the time-
reversal operator to obey the following algebra:

�U,i�0�3� = �U,i�0�5� = 0. �34�

The matrix T= i�1�5 satisfies the conditions �34� and thus
the unitary part of the operator It acting on the spinless Dirac
field �8� is28
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U = T = i�1�5 = �0 I2

I2 0
� , �35�

with I2 as the 2�2 unity matrix. The unitary part of the
time-reversal operator thus simply exchanges the compo-
nents of the Dirac spinor ��x� ,�� with different valley indi-
ces, as expected. It also happens to be the same as one of the
two matrices representing the reflection operators from D2.

Another way of arriving at the same form for the time-
reversal operator is to postulate that an arbitrary chiral trans-
formation of the Dirac Hamiltonian in Eq. �29� yields a time-
reversal invariant Hamiltonian. Alternatively, our derivation
may be understood as a demonstration of commutativity of
the chiral and time-reversal transformations.

Since we have already used the invariance under T to
restrict the interacting Lagrangian, time-reversal invariance
will be observed if the remaining terms are even under com-
plex conjugation. All the terms XFi

2 and �� ·�� are thus auto-
matically invariant under time reversal; but among the re-

maining six mixed terms, the terms XC1XC2, XD1XD2, and �� ·��

are odd. Time-reversal invariance implies therefore that

gC = gD = g�� = 0, �36�

which leaves then at most 15 independent couplings.

III. ENLARGEMENT OF SYMMETRY

We found that the exact symmetries of the microscopic
Hamiltonian, D2, translational, and the time reversal leave at
most 15 independent short-range couplings. Anticipating
some of the results, it is interesting to deduce the further
reductions in the number of couplings if one by hand im-
poses larger symmetries onto the interaction Lagrangian Lint.

A. Rotational invariance

Since the rotation by 	 /2 is not a member of the D2, the
matrices �1 and �2 appear asymmetrically in Lint. If we de-
mand that they appear symmetrically, Lint becomes fully ro-
tationally invariant. This is achieved if

gA = gB = g�� = gA2 − gD1 = gB1 − gC2 = g� − g� = 0.

�37�

Let us call the interacting Lagrangian with the rotational in-
variance imposed this way Lint,rot. It would be described by at
most nine couplings.

B. Lorentz invariance

Imposing further the Lorentz invariance would require
that on top of the above restrictions, one also has that

gA1 + gB1 = gA2 + gB2 = g� + g� = 0. �38�

With the restrictions in the previous two equations the La-
grangian has only six couplings constants and may be cast in
a manifestly Lorentz invariant form, worth displaying

Lint,lor = gA1��̄����2 + gB2��̄���35��2 + gC1��̄��2

+ gD2��̄�35��2 + g���i�̄�3��2 + �i�̄�5��2�

+ g����̄���3��2 + ��̄���5��2� . �39�

C. Chiral invariance

Finally, the maximally invariant interacting Lagrangian
would be with the full, i.e., both the Lorentz and the chiral,
symmetry of the noninteracting part. This is achieved by
setting in the last equation

gC1 − g� = gB2 − g� = 0. �40�

The interacting Lagrangian can in this case be written as

Lint,max = gA1S�
2 + gD2S2 + gC1V� 2 + gB2V� �

2 , �41�

where the participating bilinears in Dirac fields,

S� = �̄��� , �42�

S = �̄�35� , �43�

V� = ��̄�,i�̄�3�,i�̄�5�� , �44�

V� � = ��̄���35�,�̄���3�,�̄���5�� , �45�

are the scalar �vector�, scalar �scalar�, vector �scalar�, and
vector �vector� under the chiral �Lorentz� transformation.
The last form makes the Lorentz and the chiral symmetries
of the Lagrangian L0+Lint,max manifest. Such a maximally
symmetric Lagrangian contains therefore at most only four
coupling constants.

IV. FIERZ TRANSFORMATIONS

The number of independent couplings is further reduced
by the existence of algebraic identities between seemingly
different quartic terms. The derivation of the so-called Fierz
transformation, which allows one to write a given local quar-
tic term in terms of other quartic terms is provided in Ap-
pendix A. A systematic application of this transformation
allows one to reduce the number of independent couplings
for a given symmetry of the interacting Lagrangian.

A. General problem

The application of Fierz identity to the set of quartic terms
allowed by the assumed symmetry in principle leads to the
set of linear constraints of the form

FX = 0, �46�

where F is a real typically asymmetric matrix, and X is a
column; the elements of which are the quartic terms allowed
by the symmetry. Of course, only the quartic terms which
share the same symmetry may be related by Fierz transfor-
mations. For example, in the maximally symmetric case

X�= �S2 ,S�
2 ,V� 2 ,V� �

2 �. When the number of couplings is small
it is easy to discern the linearly independent combinations of
the original terms but when it is not, as the case is for D2
�Uc�1�� It microscopic symmetry of Lint, one needs a more
general method of doing so.

In Appendix B we show that an asymmetric matrix, such
as the Fierz matrix F, can be written in the diadic form29 as
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F = �
i

�i
1/2�i	��i , �47�

where ��i� is the real spectrum of the related symmetric ma-
trix SF=F�F. In the eigenbasis of SF we can write, in Dirac
notation,

X	 = �
i

�i	��iX	 , �48�

so that the above linear equations can be written as

FX = �
i

�i
1/2��iX	�i	 = 0. �49�

Since the vectors ��i	� also form a basis, it must be that
either �a� for �i�0, ��i X	=0, or �b� �i=0, so that ��i X	
�0.

The first set provides us then with the linearly indepen-
dent constraints and the second with the set of remaining
linearly independent quartic terms. Since the matrices F and
SF obviously have the same kernels, the number of indepen-
dent coupling constants allowed by the symmetry is simply
the dimension of the kernel of the appropriate Fierz matrix.

B. Maximally symmetric case

Let us consider the simplest example of the quartic term
with the full Lorentz and chiral symmetry, Lint,max first. De-
fining the vector X as in the above leads to the Fierz matrix

F =�
3 3 3 − 1

5 1 1 1

3 3 3 − 1

9 − 3 − 3 5
� , �50�

with the two-dimensional kernel with the zero eigenstates

��1 =
1
�2

�0,− 1,1,0� , �51�

��2 =
1

2�3
�− 1,1,1,3� , �52�

and �1=�2=0. The remaining two eigenvalues are �3=64
and �4=144. The general method explained above implies
that the general maximally symmetric interacting Lagrangian
can be written as

Lint,max = �1�V� 2 − S�
2 � + �2�− S2 + S�

2 + V� 2 + 3V� �
2 � , �53�

with the “physical” couplings

�1 =
gC1 − gA1

2
, �54�

�2 =
− gD2 + gA1 + gC1 + 3gB2

12
. �55�

The two remaining linearly independent combinations vanish
due to Fierz identity. So the maximally symmetric interacting
theory is specified by only two quartic coupling constants,

which may be chosen to be any linearly independent combi-
nations of the above �1 and �2.

C. Lorentz-symmetric case

We may then proceed to find the independent couplings
for the next case in order in complexity, Lint,lor, with the
chiral symmetry broken down to Uc�1�. If we define the six-
dimensional vector

X� = �S2,S�
2 ,V1

2,V2
2 + V3

2,S1�
2 ,S2�

2 + S3�
2 � , �56�

the Fierz matrix is found to be

F =�
1 1 5 − 1 1 − 1

3 3 − 1 5 − 7/3 − 1/3
3 3 3 3 − 1 − 1

5 1 1 1 1 1

3 − 1 3 − 3 3 1

3 − 1 − 3 0 1 2

� , �57�

with the three-dimensional kernel spanned by

��1 =
1

5�2
�− 2,3,1,0,0,6� , �58�

��2 =
1

5�2
�− 1,4,− 2,0,5,2� , �59�

��3 =
1

2�55
�− 3,− 7,3,10,7,2� . �60�

Lint,lor can now be written in terms of only three linearly
independent quartic terms, in complete analogy with the
maximally symmetric case.

D. Lower symmetries

The symmetry ladder may now be climbed back to the
D2�Uc�1�� It minimally symmetric Lagrangian. First, re-
ducing Lorentz to rotational symmetry increases the number
of independent couplings to four. Removing the rotational
symmetry finally increases the number of couplings to six.
We may note in passing that there are two independent Fierz
identities between the mixed terms that obey the time-
reversal symmetry in Eq. �28�,

3XA1XA2 − XB1XB2 + �� � �� = 0, �61�

XA1XA2 + XB1XB2 + �� � �� = 0, �62�

so that the three mixed terms in fact contribute a single-
independent coupling.

V. RENORMALIZATION GROUP

Having determined the independent coupling constants
for each symmetry, we now proceed to study their changes
with the decrease in the upper cutoff . We will be particu-

THEORY OF INTERACTING ELECTRONS ON THE… PHYSICAL REVIEW B 79, 085116 �2009�

085116-7



larly interested in fixed points of such renormalization-group
transformations, as they will provide the information on the
quantum metal-insulator transitions that can be induced by
increase in interactions.

A. Maximally symmetric theory

Let us again begin with the maximally symmetric La-
grangian L=L0+Lint,max. There are only two coupling con-
stants to consider in this case and we choose them to be gD2
and gA1, which correspond to S2 and S�

2 quartic terms, re-
spectively. If any of the other two terms would become gen-
erated by the renormalization transformation, we would use
the Fierz identity to rewrite it in terms of S2 and S�

2 . Alter-
natively, one may wish to renormalize the theory as written
in terms of physical couplings in Eq. �53�. This procedure
completely equivalent to what is pursued here is described in
Appendix C. As we integrate the fermionic modes lying in
the 2+1-dimensional momentum shell30 from  /b to ,
with b�1, to quadratic order in coupling constants, we find

dgD2

d ln b
= − gD2 − gD2

2 + 2gA1
2 + 3gD2gA1, �63�

dgA1

d ln b
= − gA1 + gA1

2 + gD2gA1. �64�

We rescaled the couplings here as 2g /	2→g. To this order
no other types of quartic terms actually get generated, and
the Fierz transformation turns out not to be necessary. The
limit of the above equations that survives the extension to a
large number of Dirac fields also agrees with the previous
calculation.31

The above flows, besides the Gaussian, exhibit three fixed
points at finite couplings �Fig. 3�. The first critical point �A�
is at gD2=−1 and gA1=0 and the second critical point �C� is
at gD2= ��5−1� /2 and gA1= �3−�5� /2. There is also a bicriti-
cal fixed point �B� that separates the domains of attraction of
the two critical points, at gD2=−��5+1� /2 and gA1= ��5
+3� /2.

The physical interpretation of the critical point A is obvi-
ous. Since we can tune through it by keeping gA1=0 and
increasing gD2 over a certain negative value, it should de-
scribe the transition into the insulator with the gap that
breaks the time-reversal symmetry described by

��̄�35�	 � 0. �65�

This state is obviously favored at a large and negative gD2.
Note that since �35 commutes with ��, the line gA1=0 is
invariant under RG. In fact, the perturbative � function along
this line has to be identical as the one in the Gross-Neveu
model. We can therefore simply use the already existing
higher-order estimates32,33 and the numerical results34,35 to
find the critical exponents describing this particular metal-
insulator transition. We return to this fixed point shortly.

The physical interpretation of the critical-point C is less
obvious, but we can think of it as follows. First, note that the
line gD2=0 and gA1�0, which describes the Thirring
model,36 belongs to the domain of attraction of C. Also, the
Fierz transformations in Eq. �50� imply

gD2S2 + gA1S�
2 = �gD2 − 2gA1�S2 − gA1V� 2. �66�

The line gD2−2gA1=0 for gA1�0, which we name the
Nambu-Jona-Lasinio �NJL� line,37 also falls into the domain
of attraction of the critical-point C. Along this line, however,
there should be a transition into an insulating state with

�n� · V� 	 � 0, �67�

where n� is a unit vector. Such a state is clearly favored at a
large and positive gA1 along the NJL line and breaks the
chiral SUc�2� symmetry down to U�1�. We therefore identify
C as the metal-insulator critical point governing the chiral-
symmetry-breaking transition in both Thirring and NJL mod-
els with a single Dirac field.

The picture suggested by the above one-loop calculation
in the maximally symmetric theory appears quite natural.
There are two possible insulating phases, each breaking ei-
ther chiral or time-reversal symmetry, which correspond to
possible “masses” for the Dirac fermions. Both metal-
insulator transitions are continuous and are described by dif-
ferent critical points.

Of course, the true low-energy theory on the honeycomb
lattice is much less symmetric than the one studied in this
section. Nevertheless, we will argue that the two identified
critical points may in fact be stable at least with respect to
weak manifest breaking of the Lorentz and chiral symme-
tries.

B. Broken Lorentz symmetry

The explicit breaking of Lorentz symmetry down to the
rotational symmetry can be easily implemented by adding to
Lint,max a small symmetry-breaking term,

g
D2

C

A

B

g
A1

NJL

FIG. 3. Schematic flow diagram of the two coupling constants in
the maximally symmetric theory. The fixed-point A describes the
continuous transition into a time-reversal symmetry broken insula-
tor and C describes the dynamical generation of the chiral-
symmetry-breaking mass. The line gD2=0 describes the Thirring
model and the dashed line describes the Nambu-Jona-Lasinio model
in 2+1 dimensions. �See the text.�
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���̄�0��2, �68�

which by virtue of being only rotational symmetric is guar-
anteed to be linearly independent of S2 and S�

2 . A weak per-
turbation � to the lowest order in couplings gD2 and gA1 then
flows according to

d�

d ln b
= ��− 1 − gD2 + gA1� + O��2� . �69�

We thus find the critical-point C to be stable with respect to
weak Lorentz symmetry breaking to one loop, the bicritical-
point B to be unstable, and A to be marginal. We suspect that
this result, although clearly an outcome here of an uncon-
trolled approximation, may be indicative of the true state of
affairs. Hereafter we will assume that the critical-points A
and C are stable with respect to weak breaking of the Lorentz
symmetry in the Lagrangian. It may also be worth mention-
ing that the complete one-loop � functions for �, gA1, and
gD2, which we have computed but have not shown, do not
lead to any new critical points at ��0.

C. Broken chiral symmetry

The simplest quartic term with the full Lorentz symmetry
and only Uc�1� subgroup of the full chiral symmetry may be
written as

Lint,lor = gD2S2 + gC1V1
2 + g��V2

2 + V3
2� . �70�

The Fierz transformation matrix given above implies that
these three quartic terms are indeed linearly independent.
When gC1=g�, the Lagrangian Lint,lor acquires the full chiral
SUc�2� symmetry and may be rewritten as Lint,max.

Using the Fierz transformation, and after a convenient
rescaling of the couplings as g /3	2→g, to the quadratic
order one finds

dgD2

d ln b
= − gD2 − 6gD2

2 − 4g�
2 + 6gD2gC1 + 12gD2g� − 8gC1g�,

�71�

dgC1

d ln b
= − gC1 − 6gC1

2 − 8g�
2 + 6gD2gC1 − 4gC1g�, �72�

dg�

d ln b
= − g� − 8g�

2 + 6gD2g� − 10g�gC1. �73�

The two chirally symmetric critical points from Sec. V A
now appear at gD2=−1 /6, gC1=g�=0 �A� and gD2= �3�5
−7� /12, gC1=g�= ��5−3� /12 �C�, and both remain critical,
even in the absence of chiral symmetry in the Lagrangian.
There is, however, an additional critical point �E� at gD2
= ��5−2� /6 and gC1=−2g�= ��5−3� /6. Note also that the
plane g�=0 is invariant under the renormalization group, but
whereas the fixed-point A in that plane is critical, the fixed
point �D� at gD2=0 and gC1=−1 /6 is bicritical. One also
finds that the line gD2=0, gC1�0, and g� infinitesimal and
positive intersects the critical surface which contains the
point E; whereas for g� infinitesimal and negative the critical

behavior is governed by C. For weak g� therefore there is a
crossover from the fixed point at D toward either C or E,
depending on the sign. Interestingly, for negative g� chiral
symmetry becomes fully restored at the transition, at least
within our one-loop calculation.38

VI. ATOMIC LIMIT

Motivated by the one-loop results, we will assume here-
after that the Lorentz symmetry becomes restored at long
distances in the domain of interest and that we need only
consider Lint,lor with the three couplings from Sec. V C. The
situation however, can then be simplified even further, as we
discuss in this section.

Consider the interaction Hamiltonian in Eq. �11�. If the pz
orbitals are well localized on their corresponding lattice sites,
we may neglect the matrix elements with ��� or ���.
Keeping only the remaining dominant matrix elements then
one obtains the “atomic limit” of the general interaction
Hamiltonian,

Hint → Hlat = �
�,�

V�,�n�n�, �74�

where n� is the electron number operator at site �. The class
of Hamiltonians Hlat is evidently still rather broad and
would, for example, include all lattice interacting Hamilto-
nians.

Writing the lattice Hamiltonian Hlat in terms of the Dirac
fields, however, imposes yet another restriction on the cou-
pling constants. Since Hlat is written in terms of lattice-site
particle number operators, any Dirac quartic term evidently
must contain an equal number of u† �v†� and u �v� fields. On
the other hand, the g� term from above in momentum space
can be written schematically as

�V2
2 + V3

2� 
 �u1
†v2 + v1

†u2��u2
†v1 + v2

†u1� �75�

and thus contains the terms forbidden in the atomic limit39

such as u1
†v2u2

†v1. The index 1 and 2 refers to the two Dirac
points. This implies that for any lattice Hamiltonian Hlat, we
must have

g� = 0. �76�

Note that the plane g�=0 is invariant under the change in
cutoff in the above one-loop calculation. It is easy to see that
this feature of the � functions for gD2, gC1, and g� is in fact
true to all orders in perturbation theory. The matrices �35 and
I in the remaining two terms in Lint,lor commute with the
Dirac propagator, and therefore an arbitrary diagram contain-
ing gD2 and gC1 terms can contribute only to the renormal-
ized gD2 and gC1 couplings. So imposing g�=0 at an arbi-
trary cutoff guarantees its vanishing at all others.

It is therefore not only physically justified but also inter-
nally consistent to consider only the two couplings gD2 and
gC1 in the Lorentz symmetric but chirally asymmetric low-
energy theory. The one-loop result in this plane is depicted in
Fig. 4. The transition is either into the time-reversal-
symmetry broken or into chiral-symmetry-broken insulator.
Several features of this flow diagram that should be generally
valid are worth mentioning.
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�1� There should be two critical points, both unstable in a
single direction. Bicriticality of A, for example, would imply
that the transition for negative gD2 at a weak positive gC1 is
of first order. This, however, seems unlikely on physical
grounds, and, also, it is not found in the explicit large-N
generalization of the theory, when the two � functions are
known to decouple.31

�2� The two critical points have identical critical behavior.

This is because the term �̄�35�, in graphene representation,
under the transformation

� →
1

2
�i�I2 + �z� � �z + �I2 − �z� � I2�� , �77�

�† →
1

2
�†�i�I2 + �z� � �z + �I2 − �z� � I2� , �78�

goes into �̄�, and vice versa, while L0 remains invariant.
This also means that the two � functions are symmetric un-
der the exchange gD2↔gC1. Both critical points are thus in
the universality class of the Gross-Neveu model.

�3� At the line gD2=gC1 the single � function becomes

dgD2

d ln b
= − gD2, �79�

i.e., gD2 flows according solely to its canonical dimension.
This is because

��̄�35��2 + ��̄��2 = 2��+
†�z�+�2 + 2��−

†�z�−�2,

�80�

where �†= ��+
† ,�−

†�. Since all �� are block diagonal, +K�

and −K� components at this line decouple. The partition func-
tion factorizes into a product of two Gross-Neveu partition
functions, each containing a single two-component Dirac fer-
mion. Along this line the system is believed to have the
metal-insulator transition, possibly continuous;35 but the �
function vanishes at least to the order gD2

3 .33

VII. CRITICAL EXPONENTS

Each identified metal-insulator transition is characterized
by a set of critical exponents. We will here focus on the three
already mentioned in Sec. I: the correlation length exponent
�, the dynamical exponent z, and the Dirac fermion anoma-
lous dimension 
�. The other exponents can then be ob-
tained from the usual scaling relations.25

First, since all the identified critical points exhibit Lorentz
symmetry,

z = 1. �81�

We also find that the exponent � is unity at all critical points
as well, but this is clearly an artifact of the one-loop calcu-
lation. In general, � is expected to be different at different
critical points. The same goes for 
�, which vanishes in
one-loop calculation but will be finite in general.

In the atomic limit, when under the assumed Lorentz in-
variance we need only two coupling constants; the values of
the critical exponents are better known. First, in a perturba-
tive calculation in powers of coupling constants, the expo-
nents at critical-points A and D will be identical. We may
thus expect that in a lattice theory with short-range repulsion,
the transition is either into the time-reversal symmetry or
chiral-symmetry-broken insulator, in either case with35

� = 0.74 – 0.93, �82�


� = 0.071 – 0.105. �83�

Note that since there is only a single Dirac field involved, the
numerical values of the exponents � and 
� differ signifi-
cantly from the large-N values of unity and zero, respec-
tively. This raises hope that this nontrivial critical behavior
may be observable in numerical simulations of lattice mod-
els.

Although not of immediate relevance to graphene, it
would still be of interest to determine the critical exponents
at the chirally symmetric critical-point C, which we proposed
to control the critical behavior of the Thirring and the NJL
model. We, however, are not aware of any analytical or nu-
merical study of the NJL model that goes beyond the leading
order in large-N calculation.40

VIII. FERMI VELOCITY AND RESIDUE
OF QUASIPARTICLE POLE

The critical exponents—as usual—govern, for example,
the critical behavior of the gap on the insulating side of the
transition, as mentioned in Sec. I. In the present case, how-
ever, there are massless fermionic excitations on the metallic
side and one may wonder if and how the approach to the
critical point is reflected onto these. Let us therefore gener-
alize slightly and provide the support for the results already
announced in Sec. I.

First, the usual scaling25 implies that at the cutoff  /b the
electron’s two-point correlation function near the critical
point and at zero temperature satisfies

g
D2

g
C1

D

A

FIG. 4. The flow diagram in the gD2−gC1 plane. The possible
nonperturbative fixed point at the gD2=gC1 line, which governs the
transition in the two-component Gross-Neveu theory, is not shown.
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G = bxF̃�bk,bz�,tb1/�� , �84�

where � is the Matsubara frequency and t
�Vc−V��0 is
the transition’s tuning parameter. Setting tb1/�=1 we thus
find the usual scaling law,

G = t−x�F�t−�k,t−z��� , �85�

where F�x1 ,x2�= F̃�x1 ,x2 ,1� is a universal scaling function.
From here we can extract the scaling of the Fermi velocity
and quasiparticle residue as follows. First, if upon the ana-
lytical continuation to real frequencies G has a pole at

� = vF�t�k , �86�

the scaling relation immediately dictates that

vF�t� = t��z−1�vF. �87�

Let us next set �=0, take k�0, and let t→0. In this limit

G 

1

k1−
k
�88�

and therefore F�x1→� ,0�
1 /x1
1−
k. In order to cancel the t

dependence of the prefactor in Eq. �85�, in this limit it must
be that

x = 1 − 
k, �89�

where 
k is the �momentum� anomalous dimension. Analo-
gously, assuming that for k=0, G
1 /�1−
�, one finds that
also

x = z�1 − 
�� . �90�

On the other hand, in the opposite limit t�0 and �→0,
in the metallic phase at low energies we have fermionic qua-
siparticles. This implies that, for example, F�0,x2→0�

1 /x2, i.e.,

G =
Z

�
, �91�

with Z
 t�z−x��. Combining with the previous relation, the
quasiparticle pole’s residue behaves as

Z 
 tz
��. �92�

For z=1, the two anomalous dimensions are the same, 
k
=
�=
�, where 
� is the Dirac fermion’s anomalous di-
mension, and the scaling announced in Sec. I follows. The
special form of this relation for large number of Dirac com-
ponents when besides z=1, it is also �=1, was previously
proposed.2 The quasiparticle residue vanishes upon the ap-
proach to the metal-insulator transition, as proposed long ago
by Brinkman and Rice,26 but here in a decidedly non-mean-
field fashion.

IX. DISCUSSION

There are at least two obvious generalizations important
for real graphene: the addition of spin and the inclusion of
the long-range tail of Coulomb repulsion. Adding spin would
simply double the number of couplings for each symmetry,

since each independent quartic term would then require a
separate coupling in the singlet and in the triplet channels.
The minimal internally consistent low-energy theory would
then be the generalization of the Lorentz invariant Lagrang-
ian in Eq. �70�, with g�=0,

Lint,lor
spin = � gM,i��̄�M���

i �����̄�M���
i ��� , �93�

where the sum goes over M = I, �35, and i=0, x, y, and z, with
�0= I2, and gM,x=gM,y =gM,z. The Lagrangian with g�35,i=0
would represent the extended Hubbard model with on-site
and nearest-neighbor repulsion considered before in the limit
of large number of Dirac fermions in Ref. 2. The interplay
between the various instabilities in the theory equivalent to
the above Lagrangian was recently studied in Ref. 41, where
it was pointed out that the second-nearest-neighbor repulsion
implies a negative coupling g�35,0, for example. The form of
the above minimal spinful Lagrangian facilitates a systematic
study of the metal-insulator transition in the Hubbard model,
which will be a subject of a separate publication.

Few comments on the importance of long-range tail
of Coulomb interaction are also in order. Weak Coulomb
�
e2 /r� interaction is an �marginally� irrelevant perturbation
at the Gaussian fixed point and this remains true at the metal-
insulator critical point at large N as well.2–4 Furthermore, the
entire � function for the charge coupling e2 can be computed
at large N and it does not exhibit any nontrivial zeros.42,43 On
the other hand, several calculations show that by increasing
the coupling e2 beyond certain point and for small enough N
the system can be tuned through a metal-insulator transition
at which the chiral symmetry becomes spontaneously
broken.11,44–47 The nature of such a putative metal-insulator
transition is in our mind an open question at the moment.
Whereas it is possible that it is described by new “charged”
critical point48 corresponding to the nontrivial zero of the
��e2�, it also seems conceivable that the charge is always
irrelevant and that the transition is still in the universality
class of the critical-point C, in our nomenclature. Yet another
possibility is a discontinuous transition. More work is obvi-
ously needed in order to be able to address this issue more
conclusively. It may also be interesting to note that in the
related bosonic problem, when a systematic expansion near
four dimension is readily available, there are no charged
critical points in the theory to the leading order.49 This may
also be contrasted with the well-known example of �albeit
Lorentz invariant� scalar Higgs electrodynamics, for which
the critical points, when they exist, are always charged.25,50

Probably the central message of this work is that provided
Lorentz invariance becomes emergent near criticality, for the
pz orbitals well localized on carbon atoms, the Lagrangian
may be taken to contain only two �or with the physical spin,
four� coupling constants. If there are no intervening first-
order transitions, one can infer then that there are two pos-
sible continuous metal-insulator transitions—both governed
by the same Gross-Neveu model in 2+1 dimensions—into
the states that break either time reversal or chiral symmetry.
The residue of the quasiparticle pole on the metallic side
plays the role of the metal’s order parameter and it vanishes
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continuously with a small critical exponent proportional to
the fermion’s anomalous dimension. In contrast, the specific-
heat coefficient

lim
T→0

Cv

T2 , �94�

being dependent on the Fermi velocity only, at the transition
vanishes discontinuously from a finite value on the metallic
side. Near the critical point and for the temperatures much
below the bandwidth, we may assume that the specific heat
obeys the scaling relation

Cv = T2/zvF
−2R� T

tz�� . �95�

For small arguments the universal scaling function R�x� be-
haves as R�x�
x2�z−1�/z, so that in the metallic phase one
finds the usual quadratic temperature dependence

Cv 
 T2vF
−2t2��1−z�. �96�

Recognizing the proportionality of the specific-heat coeffi-
cient as �vF�t��−2 gives us yet another way to deduce Eq.
�87�. At the criticality, on the other hand,

lim
T→0

CvvF
2

T2/z = R��� , �97�

with R��� expected to be finite. When z=1, the specific-heat
coefficient near criticality jumps therefore from R�0� in the
metallic phase to R��� at the critical point and finally to zero
in the insulating phase.51

Similarly, the optical conductivity near the metal-insulator
transition will obey the scaling relation for t�0,

���� = H� �

tz�� e2

h
, �98�

with H�x� as a universal function, and with

H�0� =
	

4
, �99�

as the familiar universal dc conductivity per Dirac field in
the metallic phase.16 In contrast to the specific heat, there is
no �nonuniversal� dimensionful quantity such as vF in the
scaling expression for conductivity and consequently ��0� is
constant and universal in the entire metallic phase. Right at
the transition then

���� = H���
e2

h
, �100�

so the dc conductivity, while still universal, at the criticality
should be different than in the metallic phase. Finally, in the
insulator the dc conductivity vanishes, so that the dc
conductivity—similar to the specific-heat coefficient—in
principle should show two universal discontinuities at the
metal-insulator transition.

One obstacle to experimental observation of these predic-
tions is that it has not been possible yet to tune the parameter

�interaction /bandwidth� in graphene and sample different
phases of the system. The application of the magnetic field,

however, changes this since the kinetic energy becomes com-
pletely quenched and infinitesimal interaction immediately
induces a finite gap. If the parameters of the system place it
not too far from the metal-insulator transition, the gap m
would obey13

m

vF
= �a

l
�z

G�lt�� , �101�

where l is the magnetic length, a=1 / is the lattice constant,
and t is the tuning parameter. G�x� is a �universal� scaling
function. The computation of the scaling function in the
large-N limit and the consequences of this scaling relation
for experiment were discussed at length before.13 Here we
only wish to underline that the emergent Lorentz invariance
of the metal-insulator critical point via its consequence that
z=1 implies precise proportionality between the interaction
gap and the Landau-level separation at the criticality,

m = vF
�BG�0� , �102�

where G�0� is a universal number. Such a square-root mag-
netic field dependence of the gap is well known to arise from
the long-range tail of the Coulomb interactions, but the
above derivation serves to show that its origin may in prin-
ciple lie in purely short-range interactions as well.

X. SUMMARY

We have presented the theory of electrons interacting via
short-range interactions on honeycomb lattice and, in par-
ticular, determined the number and types of independent
quartic terms in the low-energy Lagrangian. Metal-insulator
quantum critical points and the concomitant quantum critical
behavior were discussed, with the particular attention paid to
the consequences of the emergent Lorentz invariance. The
minimal internally consistent local Lagrangian for spinless
fermions is shown to contain only two Gross-Neveu-type
quartic terms. Generalizations that would include long-range
Coulomb interaction or spin of electrons were briefly consid-
ered. We also discussed the critical behavior of several key
physical quantities on the metallic side of the transition such
as the Fermi velocity, the residue of the quasiparticle pole,
specific heat, and the frequency-dependent conductivity.
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APPENDIX A: FIERZ IDENTITY

For completeness, we provide the derivation of the Fierz
identity. Assume a basis ��a ,a=1, . . . ,16� in the space of
four-dimensional matrices and choose ��a�†=�a= ��a�−1.
Then any Hermitian matrix M can be written as

M =
1

4
�TrM�a��a, �A1�

with the summation over repeated indices assumed. This can
be rewritten as
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4�li�mjMlm = �ml
a �ij

a Mlm, �A2�

and therefore it follows that

�li�mj =
1

4
�ml

a �ij
a . �A3�

Applying this identity to the product of two matrix elements
then yields

MijNmn =
1

16
�TrM�aN�b��in

b �mj
a . �A4�

Finally, this leads to the expansion of a quartic term as

��̄�x�M��x����̄�y�N��y��

= −
1

16
�TrM�aN�b���̄�x��b��y����̄�y��a��x�� ,

�A5�

which is used in the text for x=y. The minus sign in the last
line derives from the Grassmann nature of the fermionic
fields.

APPENDIX B: DIADIC FORM OF THE ASYMMETRIC
MATRIX

Any real N-dimensional matrix M can obviously be writ-
ten as

M = �
i=1

N

Mi � ei
�, �B1�

where Mi
�= �M1i ,M2i , . . . ,MNi�, and �ei� j =�ij. In Dirac nota-

tion,

M = �
i=1

N

Mi	�ei , �B2�

and

M� = �
i=1

N

ei	�Mi �B3�

is the transposed matrix. There exists such a representation
of the matrix M in any basis of vectors ẽi	, as can be seen by
multiplying M from the right with 1=�iẽi	�ẽi.

Let us now form a related symmetric matrix SM =M�M.
Being symmetric, it can be written in the usual spectral form

SM = �
i=1

N

�i�i	��i , �B4�

where ��i � j	=�ij. We can now write, however, the matrix
M in the particular eigenbasis of the associated symmetric
matrix29 SM

M = �
i=1

N

Ki	��i . �B5�

From the definition of S and its spectral form, we see that
�Ki Kj	=�i�ij, and therefore

M = �
i=1

N

��i�i	��i , �B6�

where Ki	=��i�i	, and ��i � j	=�ij. For a general asymmet-
ric matrix, the basis � and � are different, and the last equa-
tion generalizes the more familiar form for a symmetric ma-
trix, where they are the same.

APPENDIX C: RENORMALIZATION GROUP UNDER
FIERZ CONSTRAINTS

Here we provide an alternative formulation of the
renormalization-group transformation in the presence of con-
straints imposed by the Fierz identity. Let us demonstrate this
method on the simplest example of the maximally symmetric
theory. Instead of choosing two independent couplings and
using Fierz transformation at intermediate stages of the cal-
culation to transform any other generated quartic terms back
into the chosen ones, one may use the kernel of the Fierz
matrix to write the Lagrangian in terms only of the physical
couplings from the outset, as in Eq. �53�. The advantage of
doing this is that no other quartic term besides the ones cor-
responding to the physical couplings can ever get generated
then by the renormalization transformation. The set of cou-
plings �1 and �2 is therefore closed under renormalization.
The computation to the quadratic order then yields

d�1

d ln b
= − �1 − 24�1

2 − 72�1�2, �C1�

d�2

d ln b
= − �2 − 72�2

2 − 4�1
2. �C2�

The connection to Eqs. �63� and �64� in the text can be
established as follows. Since the Fierz transformations in this
case imply

V� �
2 = − 3S2, �C3�

V� 2 = S�
2 − 2S2, �C4�

the Lagrangian Lint,max in Eq. �41� can obviously also be
written as

Lint,max = �gD2 − 3gB2 − 2gC1�S2 + �gA1 − gC1�S�
2 . �C5�

In the text, we therefore have simply named the entire first
bracket gD2 and the second gA1. But these can be recognized
as particular linear combinations of the physical couplings �1
and �2,

gD2 − 3gB2 − 2gC1 = − 2�1 − 12�2, �C6�

�gA1 − gC1� = − 2�1. �C7�

Such a connection is of course completely general and in
particular may be established between the three chosen cou-
plings in the Eq. �70� and the “physical couplings” deter-
mined by the vectors in Eqs. �58�–�60�.
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